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We consider thermodynamically V-representable one-matrices, i.e., one-particle 
density matrices that are obtained by reducing the Gibbs grand canonical den- 
sity matrix of a quantum mechanical many-particle system subject to a suitable 
external potential v, and show them to obey an inequality lower bounding their 
eigenvalues in terms of those of the one-particle kinetic energy operator. The 
result imposes a severe constraint on the asymptotic behavior of the eigenvalues 
of any one-matrix to be V-representable. For noninteracting particles, the 
corresponding upper bound is also proven, implying that a one-matrix can be 
interactionlessly V-representable for at most one temperature. We expect the 
upper bound to be valid more generally, as is illustrated by a model of coupled 
harmonic oscillators where the V-representable one-matrices can be explicitly 
calculated, and discuss its implications for certain aspects of density-matrix 
functional theory. 

KEY WORDS: Density functional theory; Hohenberg-Kohn theorem; 
V-representability; inverse problems; reduced density matrices. 

1. I N T R O D U C T I O N  

As shown by H o h e n b e r g  and Kohn ,  (~) the external  po ten t ia l  of a one- 
species q u a n t u m  mechanica l  many-par t i c l e  system is, up to an addi t ive  
constant ,  uniquely  de te rmined  by the g round-s ta te  par t ic le  density,  
p rov ided  tha t  the kinet ic  and  in te rac t ion  par ts  of the H a m i l t o n i a n  are  kept  
fixed. Thus,  the "Schr6d inger  m a p " - - l e a d i n g  in the usual  way, via solut ion 
of  the N-par t ic le  Schr6dinger  equa t ion  and  subsequent  ( N -  1 )-fold spat ia l  
in tegra t ion ,  f rom the external  one-par t ic le  po ten t ia l  to the g round-s ta te  
par t ic le  d e n s i t y - - c a n  in pr inciple  be inverted.  Associa ted  with this ra ther  

1 Institut fiir Theoretische Physik, Universit/it Kiel, D-2300 Kiel, Federal Republic of 
Germany. 
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formidable inverse problem, and a prerequisite for its solution, is the ques- 
tion of "V-representability "(2 7): Given a nonnegative real function p on N3 
with S P d3x < o0, how is one to tell whether there exists a potential v such 
that p is realized as the actual particle density in the ground state of the 
many-particle system under consideration, subject to the external potential 
v ? An answer to the latter question would at least yield a characterization 
of the domain of definition of the Hohenberg-Kohn inverse map. Since the 
Hohenberg-Kohn theorem has been extended, by Mermin, (8) to nonzero 
temperatures, the same question may be asked with regard to the particle 
density of the system in thermal equilibrium at temperature T and is 
referred to, then, as the question of thermodynamic V-representability. 

For  the purpose of including nonlocal external potentials, Gilbert (9~ 
and Donnelly and Parr (m) have rephrased the problem, and established a 
theorem analogous to the Hohenberg-Kohn theorem, in terms of one-par- 
ticle density matrices (or "one-matrices" for short) in lieu of particle den- 
sities. Since one-matrices are one reduction step less removed from the full 
grand canonical many-particle density matrix than are particle densities, 
the problem of the V-representability of one-matrices might conceivably be 
somewhat less intricate than the V-representability problem of the original 
Hohenberg-Kohn theory. In what follows, we derive a necessary condition 
for a one-matrix to be thermodynamically V-representable. 

2. T H E R M O D Y N A M I C  V - R E P R E S E N T A B I L I T Y  OF 
O N E - M A T R I C E S  

In order to make our notion of V-representability precise, we have to 
specify the class of external potentials v that will be admitted. What is 
usually done in this regard ~4~ is to allow all v EL3/2(~ 3) +L~V(~3). 2 The 
rationale behind this restriction is as follows. 

(i) One is interested in external potentials v and particle densities p 
such that ~ pv d3x is well defined, which suggests that the spaces for the v 
and for the p be chosen dual to each other. 

(ii) One is interested in one-particle densities p that result from 
N-particle wave functions 7' with finite kinetic energy expectation value 
t ( ~ u ) = ( ~ , T ~ ) ,  and because of Lieb's inequality ~ [V(p~2)]2d3x<~t(~) 
(cf. ref. 4, Theorem 1.1), this requires pl/2 to lie in the Sobolev space 
H I ( ~  3) of functions f on ~3 which have the property that both f and Vf  
(in the distribution sense) are square integrable. By Sobolev's inequality 
[ref. 4, Eq.(1.10); ref. l l ] ,  pl/2~Hl(~3) in turn implies p~L3(~3)c~ 

2 I.e., all v that may be decomposed as a sum v = v 1 + v 2 with vl e L3/2([]~3) and v2 ~ L~(~3). 
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LI([R3), which is just the dual space to the spac e L3/2(~3)+L~(~3) 
proposed by Lieb (4) for the class of admitted external potentials v. 

Our class of potentials differs from this choice in three separate 
aspects. 

�9 First, we shall restrict most of our discussion to many-particle systems 
which are confined to a bounded region ~ ~ ~3, with Dirichlet boundary 
conditions at the walls. Although this is not the only way of holding many 
particles together, 3 it is a rather natural condition to impose in the case of 
nonzero temperatures in that 

(i) it corresponds to the grand canonical point of view in thermo- 
dynamics, where one studies systems at given values of temperature, 
volume, and chemical potential; 

(ii) it guarantees that the many-particle kinetic energy operator T, 
by itself, has the property that exp(-/~T) exists as a trace-class operator 
for /3 > 0, which makes it possible to use Kato-type perturbation theory 
around T; and 

(iii) it allows us to introduce purely repulsive interactions (chosen 
with the case of electrons particularly in mind) without complicating the 
choice of the class of admitted external potentials by the requirement that 
they be strong enough to ensure, in the presence of the given repulsive 
interparticle forces, the thermodynamic stability of our one-species system 
in infinite space. 

With the confinement taken care of by the boundary conditions, the 
remaining external potential's only purpose is to produce the spatial 
inhomogeneity encoded in the one-matrix considered, whenever possible. 
As a further consequence, restrictions which control the potentials at 
infinity become redundant, and Lieb's requirement for v would, in our case, 
simply amount to demanding that v e L3/2((2). 

Second, since we are studying one-particle density matrices 7 rather 
than particle densities p, the external potentials which we admit form a 
class of linear operators v, to be specified further below, on the one-particle 
Hilbert space L2((2). Thus we include, besides local potentials of a certain 
kind, also a class of nonloeal potentials. In this way, our class of external 
potentials extends beyond any set of potentials defined as real functions. 

Third, the condition which we shall impose on our external poten- 
t ia ls-being motivated by the technical requirements of Kato-type operator 
perturbation theory--is different, mathematically, from the condition adop- 
ted in the work referred to above. (4) This turns out to be an advantage in 

3 See also the model of coupled oscillators treated in Section 5 below, where we explicitly deal 
with a thermodynamic system in infinite space. 
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the sense that our subclass of local potentials, i.e., of those admitted one- 
particle operators v which are diagonal in the x representation, is in fact 
even somewhat wider than L3/2(O). 

We shall formulate our general many-particle Hamiltonian for the case 
of fermions, because they are what density functional theory is usually 
applied to in practice. (There is, however, no difficulty in treating other 
statistics, and we shall in fact have occasion to discuss a model of bosons 
in Section 4, and a case of Boltzmann statistics in Section 5.) We take our 
particles to be spinless in order to keep the notation as simple as possible 
(again, there is no difficulty of principle involved in including spin). 

Let - A •  denote the negative Laplace operator on t2 appropriate for 
Dirichlet boundary conditions, (12) i.e., the Friedrichs extension of the 
negative Laplace operator defined on C~(t'2). From it, the many-fermion 
kinetic energy operator is obtained by the usual prescription: Given any 
closed linear operator A on Lz(Q) with domain ~ ( A )  and form domain 
.r we follow Cycon etal. 03~ in writing dAn(A) for the associated 
n-fermion ope ra to r ,  i.e., for the closed linear operator on the space 
AnL2(f~) of conjugate-linear antisymmetric n-forms defined on the core 
~ (A)  A @(A) ^ ...  A ~ ( A )  (n times) by 

dAn(A)(,;ol /x q~2/x ...  A ~o,,) 

= ~ q) l A " ' '  A (Pi - -1  A (Aq~i) A ~Pi+l A ..- A ~0 n ( la)  
i = 1  

where A stands for the exterior product of antisymmetric forms. The 
corresponding operator on the fermion-Fock space A*L2(f2) will be 
denoted by dA*(A) and is defined as the direct sum 

co 

dA*(A)=  @ dAn(A) ( lb)  
n = 0  

The kinetic energy operator on fermion-Fock space is thus dA*( -Aa) .  
(We use units such that h = 2m = 1.) 

As interaction operator W we choose the direct sum 

oo 

W =  @ W ~"~ (2) 
n = 0  

of maximal multiplication operators W ~n) on AnL2(s which multiply by 
~ <, i<j<,,, w ( x i -  xj), where w E L2(t2 ') is a nonnegative real function. 4 This 

4 Here, s denotes the set of all vectors x' = xl - x2 with x a e f2, x 2 ~ f2. 
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class of interactions is large enough to include the Coulomb interaction 
w(x)=  1/Ixl, while at the same time keeping each W (") infinitesimally 
operator-bounded (or "Kato-tiny") (~4~ with respect to the kinetic energy in 
the sense that, for any e > 0, there exists b~ z N such that 

IIW":~ll ~<~ IIdAn(--A~) ~ll +b~ I1 ~lt, V~e ~(dA"(-A~)) (3) 

Hence 

Ho = [dA*(-Aa)+W]~ (4) 

where the tilde denotes operator closure, is a self-adjoint operator which is 
nonnegative (because of w ~> 0) and has the property that exp(- /?Ho)  is of 
trace class for all fi > 0 (ref. 15, Section X.2; ref. 16, Section VIII.10). 

While the kinetic and interaction parts of the Hamiltonian are to be 
kept fixed, the external potential is meant to vary over a suitable class 
of one-particle operators v. Ideally, this class should comprise, loosely 
speaking, all v which lead to a many-particle Hamiltonian Hv (i.e., Ho 
"plus" the many-particle operator associated with the potential v) that can 
be meaningfully defined as a self-adjoint operator on a suitable domain 
dense in A*L2(f2) such that exp(- f iH~)  exists as a trace-class operator for 
f l>0.  (Otherwise, there would be no Schr6dinger map to which the 
Hohenberg-Kohn-Mermin inverse map could be inverse). Obviously, 
therefore, the class of potentials that can be admitted depends on the 
mathematical techniques available for assuring the properties required 
for Hr. If this control is to be achieved by Kato-type perturbation theory 
"around" Ho, one is led to restrict the admitted external potentials to those 
symmetric operators v with ~.(v)~_ ~ ( -  AQ) which are "infinitesimally form 
bounded ''~ with respect to - A a ,  i.e., we demand that, for any 5>0 ,  
there exists c~ ~ N such that 

I(~, v~)l ~< ~(~, - A ~ )  + e~0P, ~,), WP r :~ ( -Aa )  (5) 

Then, dA*(v) is infinitesimally form bounded with respect to Ho, and we 
can define Hv as the self-adjoint operator associated, by Kato's first 
representation theorem (ref. 14, p. 322; see also ref. 17), with the closed 
symmetric form (60, HOT')+ (60, dA*(v) ~u) on ~(Ho), so that exp(-f iHv) ,  
too, is of trace class for all fl > 0. Similarly, we write h, for the self-adjoint 
operator associated with (~o, - A a ~ ,  ) + (qL vO) on ~ ( - A a ) .  

Although termed "infinitesimal," the form boundedness in condition 
(5) constitutes a fairly wide class of potentials and allows for quite strong 
singularities. In particular, as stated earlier, all L3/2(0) functions, inter- 
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preted as multiplication operators, satisfy condition ( 5 ) .  (14) As a conse- 
quence, the local potentials are permitted to be as singular as 

1 
v(x) ix_x012_ ~, ~ > 0  

i.e., considerably more singular than the Coulomb potential. Any model of 
electrons in the presence of fixed nuclei, for instance, would thus be 
included. The class of so-called Rollnik potentials, (18) i.e., the class of all v 
for which 

fo fo Iv(x)[ Iv(y)[ d3 x d3y < co 
Ix-yl  

which is also frequently considered when the construction of Hamiltonians 
as quadratic forms is discussed, equally satisfies (5). What cannot be 
handled along the lines of the present approach, on the other hand, are 
singularities of 6-type distributions: they are definitely excluded. 5 

Finally, let 
~o 

N =  @ nlA.L2(~ ) (6) 
n = 0  

denote the particle number operator. Then 

H .  - / ~ N  = H v _ ~1L2~ ( 7 )  

is self-adjoint on ~(Hv)  for all real #, and e x p [ - / ~ ( H , - # N ) ]  is of trace 
class for all ~ e ~ and all/~ > 0, so that the grand canonical density matrix 

~_(v) = e x p [ - / ~ ( H v - # N ) ]  
~'" T r ~  ~ - - - ~ ]  } (8) 

and the grand thermodynamic potential 

Y(/~, #; v) = - /?  -1 tn(Tr {exp[ - /~(H,  - / ~ N ) ]  }) (9) 

exist and are finite for all # e N and all/~ > 0. 

We are now in a position to introduce the notion of V-representability. 

5 The inclusion of &type singularities, of interest from the point of view of certain many- 
electron models such as the Kronig-Penney model, would substantially alter the notion 
of V-representability that is being discussed; see, e.g., Chayes et al., (7) who argue that some 
of the "counterexamples" of Englisch and Englisch 15~ of non-V-representable densities might 
become V-representable if sufficiently singular potentials, such as h-type distributions, were 
to be admitted. 
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D e f i n i t i o n  1. The partial trace map H: ~ - ~  ~3 is defined on 

= {r  e ~(A*L~(,Q)) I r ~> 0, T r { r  } = 1, Tr{F~/2NF v2} < oo } 

onto 

by 

(o, )O)= Z 
n = l  i 2 ~  . , .  < i n  

(10) 

where ~ means restriction, ~ (b )  denotes the trace class of linear operators 
on the Hilbert space b, and {Zi}~l is any complete orthonormal set in 
L2(f2). We say that 7 e ~3 is (thermodynamically) V-representable for an 
inverse temperature /~>0 if there exists an infinitesimally ( -Aa) - fo rm 
bounded symmetric operator v on L2(Q) such that for some value of # 

- rr~(*) ~ (11) 

Obviously, in view of (7), if , / is  V-representable for an inverse tem- 
perature/~ at the chemical potential # by some v, it is also V-representable, 
for the same/~, at any other (allowed) value #' of the chemical potential by 
the simple shift v' =v  + ( y - # ) l c 2 ( m .  This makes it possible to speak of 
V-representability without reference to the chemical potential, except for 
noting that it is the difference v -  plL2(o) which is determined uniquely by 
a V-representable "/, so that such , /does determine v completely (and not 
just up to an additive constant) as soon as the chemical potential # is 
specified. 

Any V-representable 7 - H  ~=(~) ~ must satisfy some obvious require- - t ~ , M  

ments, such as 

Tr{~,~/~(_ A~)~,~/2 } ~< Tr{~.~/~HoNg~/2 } < oo 

and, by the Klein-Delbrtick-Moli~re inequality [see ref. 19, inequality 
(3.18)3, 

S(7) ~< ]3 Tr {7'/2( - An) ~gl/2 } "4- Tr{'/} In Tr {exp[ -/~( -- A~)3 } 
Tr{7} 

< o o  

where S(7)= -Tr{,/ln(~,)} is the entropy of 7. Apart from these rather 
weak requirements which follow immediately from our basic assumptions, 
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no further properties which would provide a more specific characterization 
of V-representable one-matrices seem to be known. Ideally, one would wish 
for a criterion which would allow one to decide, for every y e ~ and on the 
basis of properties exhibited by 7 alone, whether y is V-representable or 
not and, if it is, for what temperature(s). This is the problem of thermo- 
dynamic V-representability of one-matrices. For want of such a criterion, 
we prove, in the next section, a necessary condition for V-representability 
which, though elementary, hitherto seems to have gone unnoticed. 

3. AN I N E Q U A L I T Y  FOR V - R E P R E S E N T A B L E  O N E - M A T R I C E S  

Our results rest on the following theorem. 

T h e o r e m  1. Let , / E ~  be V-representable, as in (11), for inverse 
temperature ft. Then 

- f l - ~  in(y) ~< h , -  (Y( f l ,  if; v) + kt) 1L:(~) (12) 

and for all q )E~(- -Ae)  with II~o[I = 1 

((p, ycp)> e ~(r(~'";*) +") e x p [ -  fl(cp, h~o)] (13) 

Proof .  Since ~(*) is positive, omitting all terms with n/> 2 from 

((P, Y0):----" ~ (eA. /~ i2  A " ' "  AZin, \--f l,,u Zi2 A "" 
n - - 1  i 2  < - . .  <in 

gives the lower bound 

(cp, 7cp)> (~0, =(*) ~L2~)cp)= e ~ r ~ '  "; *)+~)(~o, exp ( - f l h , )  cp) (14) 

for all cp eL2(O) with Ucpll ~0 ,  so that 

y > e ~(r~'u;*) exp ( - f l h , )  (15) 

Inequality (12) now follows with the operator monotonicity of the 
logarithm on (0, ~ )  [ref. 20, Theorem 2.5, and ref. 21; the logarithm may 
be taken since (15), of course, implies 7 > 0 ] .  Inequality (13) is obtained 
from (14) by an application of Jensen's inequality [-see ref. 19, Inequality 
(3.7)] to (q~, exp ( - f l h , )  cp). 

At first sight, inequalities (12), (13), and (15) appear to be of little 
value, since the bounds they offer still depend on the exact grand potential 
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Y(/~, #; v) which is, in general, unknown. This circumstance does indeed 
preclude any explicit numerical evaluation of the bounds in the form given 
above. Although the Golden-Thompson inequality (ref. 12, p. 320) allows 
for Y(/~, #; v) to be bounded below by the grand potential y(O)(#,/~; v) of 
the corresponding interactionless system, this would be of no help either, 
since y(O)(/~, #; v) would still depend on the unknown external potential 
operator v that represents ? and could, in turn, only be lower bounded if 
the appropriate constant c~ of Eq. (5) were available. 

Nonetheless, the inequalities derived above provide valuable informa- 
tion on V-representable one-matrices, and inequality (12) does in fact yield 
a rather stringent condition which every one-matrix, in order to be V- 
representable, must fulfill. The point is this: Since the operators on either 
side of (12) have pure point spectra, bounded from below and without 
accumulation points or infinite multiplicities (below infinity), their eigen- 
values can be arranged in increasing order. While, in this order, the eigen- 
values of hv go to + ~ ,  the unknown term - (Y(fl,/~; v) +/~) stays constant 
and hence becomes more and more negligible, so that asymptotic proper- 
ties of ? may be established without knowledge of the exact Y(/~,/~; v). 

We can make the argument precise in the following manner: For any 
self-adjoint operator A with pure point spectrum which is bounded from 
below and does not have an accumulation of eigenvalues at the infimum of 
its spectrum, we can use the min-max principle (~2) to define the vth eigen- 
value from below of A as 

2,~(A)= sup inf {(4J, A~)} (16) 
r 1 ~ p ~ ( A ) ,  I l tP l l= l ,~•  

Likewise, for any self-adjoint operator B with pure point spectrum which 
is bounded from above and does not have an accumulation of eigenvalues 
at the supremum of its spectrum, we can define the v th eigenvalue from 
above of B as 

2'v(B) = - 2 v ( - B )  (16') 

With this notation, we may formulate our conclusion as follows. 

Corollary 1. If 7 ~  is V-representable, then for any E>0  there 
exists C~ > 0 (allowed to depend on 7) such that for all v E 

2;(?) >~ C, exp[ -f l (1 + ~) 2v(-&~)]  (17) 

Proof. Using (16) with A = -17 ~ ln(7), we conclude from inequality 
(12) and from the infinitesimal form boundedness of v, inequality (5), that 

822/61/1-2-28 
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- - f l  1 l n [ J [ ' u ( ~ ) ]  

= ~ v ( - - f 1 - 1  l n ( 7 ) )  

= sup inf {(~, - f i - ~ l n ( 7 )  O)} 
~01,...,~0~. i 4J~~177 l 

~< sup inf {(if, h , ~ ) -  Y(fi,.u;v)-.u} 

~< sup inf {(1 + e)(~, - A ~ , )  
~ot,...,~o~_l q/~-~(--A~),ll6'll = 1,~p• 

+c~-  r(fl, ~; v ) -#}  

= (1 + e) , L ( -  a,~) + c~ - Y ( f l ,  ~; v) - # 

Letting C~ = exp{ - f l [ c , -  Y(fl, tt; v) - #] }, we obtain inequality (17). 

Inequality (17) places a serious constraint on the spectral properties of 
any V-representable one-matrix ~, in that it limits, in an analytically well- 
specified manner, the rate at which the eigenvalues of ~, when arranged in 
decreasing order and repeated according to multiplicity, are allowed to go 
to zero. This has a number of important consequences, both for practical 
applications and for our insight into the nature of the V-representability 
problem. 

(i) One consequence of inequality (17) which is of considerable prac- 
tical importance is that no one-particle density operator ~/of finite rank can 
be V-representable, for whatever temperature. This implies that approxima- 
tions constructed from a finite one-particle basis never can produce 
V-representable "~'s. Nor can V-representable 7's be obtained by reducing 
higher-order density operators of finite rank since, according to a theorem 
by Ruskai (ref. 22, Theorem4.1), such a procedure necessarily leads to 
finite-rank one-matrices. 

(ii) A second important feature of Corollary 1 is that it refers to the 
entire infinite sequence of eigenvalues of "/, not just to individual eigen- 
values. For finitely many eigenvalues of ~/(as long as they are all positive) 
a C~ can always be found, for any fl > 0 and e > 0, such that inequality (17) 
is satisfied. Thus, inequality (17) does not lend itself easily as a test which 
would allow one to accept or discard possible candidates for V-represent- 
able one-matrices in situations where the eigenvalues of the one-matrices 
to be tested are only numerically known. Rather, inequality (17) may be 
looked upon as an indication of how one-matrices must be constructed in 
the first place if they are to stand a chance of being V-representable. 

(iii) One rather subtle aspect of inequality (17) is that arbitrarily 
small eigenvalues of 7 still have a fundamental effect upon its V-represent- 
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ability, even though their inclusion makes negligible contributions to the 
energy and to the entropy. A similar complication has been observed in the 
N-representability problem of two-particle density matrices. (22/ 

To make the bound in Corollary 1 more explicit, let us denote by (g 
the largest cube inside (2 and by L the side length of cg. Then 

2v(-A~)  ~<),~(-A~) = (n2,x+n~,y , 

where (n . . . .  nv, y, n~,z) are the integer quantum numbers of an eigenfunction 
of - Ae belonging to 2v( - A~). Since, asymptotically, 

1 ~v(-- A~) ~ ~-~ (692V) 2/3 as v ~  

we have the following results. 

Coro l la ry  2. 
(i) No ~/~ ~3 whose eigenvalues 2'v(7) go to zero as fast as exp( -~v  ~) 

with ~ > 2/3 and e > 0, or faster, can be V-representable for any/~ > 0. 
(ii) No "/e~3 whose eigenvalues 2'v('/) go to zero as fast as 

exp( -~v  2/3) with e > 0 ,  or faster, can be V-representable for any 
fl < ~L2/(6zr2) 2/3. 

It is tempting to speculate whether V-representability of one-matrices 
also implies an upper bound analogous to (17): Does there, for every 
V-representable ~/E ~3 and every e > 0, exist C'~ (allowed to depend on y) 
such that, for all v ~ N, 

2"(7) ~< C'~ exp[ -/~(1 - e )  2v ( -Aa) ]  ? (18) 

On a heuristic level, there are two arguments which could induce one 
to believe that, under the assumptions introduced earlier, inequality (18) 
might hold. One is that, because of the assumed positivity of the interaction 
W, the exponent - f l ( H v -  ~tN) in (8) is bounded above by the correspond- 
ing expression without interactions. Since, however, exp is not an operator 
monotone function, there is no direct way of exploiting the positivity of W. 
The second reason arguing in favor of (18) is that, on each A"L2(O) ,  the 
interaction as introduced in Section 2 is infinitesimally operator bounded 
with respect to the kinetic energy [see inequality (3)], which suggests that 
it ought to be possible to obtain estimates for the T-eigenvalues of the inter- 
acting system in terms of those of the noninteracting system. 

To illustrate our point we present, in the two sections to follow, two 
examples where we have succeeded in rigorously establishing the validity of 
inequality (18) or of a variant thereof [see inequality (26) below-]. The first 
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example is the system of noninteracting fermions or bosons, which turns 
out to be not quite as trivial as might be thought. The second is a model 
of harmonic oscillators with harmonic couplings. This latter example fails 
to comply with the conditions laid down in Section 2 in several aspects. In 
particular, the interaction W (") is in this case not operator bounded, nor 
even form bounded, with respect to the kinetic energy. Nevertheless, the 
harmonic oscillator model appears to us worth mentioning, especially since 
it shows that at least inequality (26), the inequality playing the role of (18) 
in the context of the oscillator model, is violated even for certain positive 
W. Although outside the setting provided by the conditions of Section 2, 
the model may thus serve as a caution against the naive belief that 
positivity of W by itself, without some additional restriction requiring that 
W be in some sense "small," might be enough for (18) to be valid. 

4. N O N I N T E R A C T I N G  P A R T I C L E S  

In the case of noninteracting fermions or bosons, the Hohenberg- 
Kohn-Mermin (HKM) inverse map is immediately obtained as an explicit 
formula expressing the representing one-particle potential operator v(7) in 
terms of the one-matrix ~/whenever the latter is V-representable for a given 
temperature. Still, the conditions which are necessary and sufficient for 
V-representability in the precise sense discussed here--and, hence, the 
characterization of the domain of definition of the HKM inverse map 
which they provide--turn out to be rather subtle even in this seemingly 
trivial situation. 

For fermions ( t / = - 1 )  or bosons (t/= +1) with w(x)=-O, a one- 
matrix 7 which is V-representable at inverse temperature/~ obeys 

~/= {exp[/~(h,--#lLz{m)]--r/1L2{a)} i (19) 

which may be solved for h, to give 

(20) 

Hence, V-representability of "/ is equivalent to the existence of an 
infinitesimally (-A~)-form bounded potential operator v(7) such that the 
operator hv, as defined by (20), is the operator associated with the form 

(~0, h , 0 ) =  (q~,-AaO) + (q~, v('/) ~), ~o, ~ e ~ ( - A a )  (21) 

by Kato's first representation theorem. (I4'17) For this to be the case, it is 
necessary and sufficient that h v have the same form domain as - A e  and 
that (0, h v 0 ) - ( ~ ,  - A a O )  satisfy the inequality (5) for (q/, vq~). Since by 
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inequality (15) any V-representable one-matrix 7 must be strictly positive, 
we have the following result. 

Theorem 2. A 7 ~ ~3 is interactionlessly V-representable for inverse 
temperature fl if, and only if: 

(i) 7 is strictly positive. 

(ii) ~(ln[7 -1 + r/1L2(n)] ) = ~(--At2 ). 

(iii) VS > O, 3C, ~ ~ such that 

(1-  ~)(~, - a ~ ) - c o ( ~ ,  ~) 

~< fl-l(@, ln[-7-1 + r/lr2(a)] @) 

~< (1 + ~ ) ( ~ , - a ~ ) +  c~(~, r V ~ ( - A ~ )  

If conditions (i)-(iii) are satisfied, the representing external potential 
operator v(7) is expressed, in the sense of the addition of forms, by 

v(7) =fl-T ln(y 1 + ~/1L2(a)) + # l L 2 ( a ) -  ( - A a )  (22) 

Since ~ ( - A a )  is known to be the Sobolev space Ho~(O), (I:)'6 and the form 
domain of In [ y - 1 +  ~/lr2(a)] may, like the form itself, be expressed in terms 
of the eigenvalues and eigenfunctions of % a more explicit version of the 
above result may be noted as follows. 

Corollary 3. Let y ~ ~3 be strictly positive and {Z~} ~ be a complete 
orthonormal system of eigenfunctions of 7 with Xv belonging to eigenvalue 
)-'~(7). Then the following two conditions are, together, necessary and 
sufficient for 7 to be interactionlessly V-representable for inverse 
temperature/3: 

(i) ~/(/l ~ L 2 ( n ) ,  

{ I(z,, @)[2 ln{ r),~,(y)] -1 +r/} < ~ ~ ~b e Hi(f2) 
v--1 

(ii) V~ > 0, 3c~ E fl~ such that 

( 1 -  s)(~, - A a ~ ) - c ~ ( ~ ,  ~h) 

v= l  

~< (1 § 2 4 7  O), VOeHl (n )  

6 H~(O) consists of all complex-valued functions ~h on O which, together with their derivative 
in the distribution sense Vg,, are square-integrable over f2 and go to zero at the boundary 
of ~. 
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In particular, condition (i) implies that all eigenfunctions Z~ of ~t must be 
in HI(~) .  

Although Equation (22) and Corollary 3 represent explicit solutions 
for the H K M  inverse map and V-representability problem, respectively, 
extracting the information which they contain remains a fairly complicated 
task. In particular, it appears extremely hard to verify whether the condi- 
tions (i) and (ii) of Corollary 3 are, in any given instance, fulfilled or not. 

In order to connect the foregoing results with the conjectured 
inequality (18), we note that (19) implies 

2'v('/) = (exp{ fl[2~(h,) - #]  } - t/)-1 (23) 

On the other hand, the infinitesimal form boundedness (5) of v implies 

(1 - e)(gt, - A o O ) - c , ( O ,  ~)~< (r h,O) ~< (1 + e)(~, - A o O ) +  c,(tp, 0) 

for all ~ h ~ ( - A a ) .  Taking the infimum over $ e ~ ( - A a )  with I1511 = 1 
and ~ l r ,..., cp~_ ~ and then the supremum over ~p~ ,..., (p~_ ~ ~ L2(O) yields 

(1-e) 2~(-Aa)-c,<~2~(h,)<~(l+~)2~.(-Ao)+c~ (24) 

We conclude that inequality (18) is satisfied for any ~ > 0  with 
C'~= { e x p [ - f l ( c ~ + / t ) ]  - ( 1  + r/)/2} -1 [-for bosons, we restrict # to values 
# < -c~ so as to ensure the positivity of the right-hand side of (23)]. 

Now assume ~/to be V-representable for the two inverse temperatures 
f l<f l '  with potentials v and v' relative to the same #. Then we have, 
according to (23), 

fl[A~(h,) - #] = lnE2'v(7) ~ + r/] = fl' E2~(h,,) - #]  

Choosing e < (fl' - fl)/(fl' + fl), we obtain from (24) 

fl'E(1 - e) ) . ~ ( - a n ) -  c'~- ~] ~< fiE(1 + e) 2 ~ ( - a n )  + c ~ -  #] 

o r  

with , 9 = f l ' ( 1 - e ) - f l ( l + e ) > 0 ,  which contradicts the fact that 
2~( - An) ~ oo as v --* ~ .  This proves the following result, 

C o r o l l a r y  4. Any one-matrix 7 e $  can be interactionlessly V- 
representable for at most one temperature T =  (ka fl)-1. 

We shall return to this result in Section 6, where we discuss it with 
regard to the general nature of the H K M  inverse problem and also with 
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regard to the use of extended functionals in density matrix functional 
theory at nonzero temperatures. Before doing so, however, we want to 
show that the result is not restricted to the interactionless case. 

5. C O U P L E D  H A R M O N I C  O S C I L L A T O R S  

Consider the n-particle harmonic oscillator Hamiltonian 

with 

H ( < =  h~oO + ~ 
i = 1  t 1 

(X  i - -  X j )  2 (25a) 

h~0 i) = -A~(i) + x 2 (25b) 

which is essentially self-adjoint on C ~ ( ~  3~) (we take x ,e  [~3 for i =  1,..., n). 
For simplicity, we regard this model not in fermion-Fock space, but in the 
n-particle Hilbert space without symmetry constraint, L2(~3"). In studying 
this model, we further deviate from the setting of Section 2 in that the inter- 
action of (25) fails to be Kato-tiny in the sense of (3), and that the external 
potential fails to satisfy condition (5). Moreover, by fixing the external 
potential, we limit ourselves to exactly one V-representable one-matrix, 
"/n,~(~c), for any three given values of fl~>0, n E N, and ~ c > - n  1. Our 
purpose is to investigate whether or not the eigenvalues of "/,,~(~) satisfy 
the inequality 

),'(~/n,e(~)) 4 C" exp[ - f i (1  - e) 2,,(h0)] (26) 

which here takes the place of inequality (18). 
With the aid of the orthogonal coordinate transformation 

X k = 7  ~1 - -  ~ k  "3V = ( 2 7 )  [ j ( j _ l ) ] l / 2 ~ j ,  k 1 ..... n 
,in 

the Hamiltonian (25) is decoupled to 

H {n)= ~ ( - A ~ ' ) + ~ + ( l + n  to) ~ ~ 
i = 1  j - 2  

and the integral kernel for the statistical operator 

={n) _ e x p ( - f l H  {n)) 

-~'~ - Tr {exp( -  fiH~")) } 

(28) 
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is easily calculated in terms of the ~j. The partial trace is then performed 
by reverting, with the aid of (27), to the original coordinates xj and by 
integrating over x2 ..... x. .  The result, for t o > - n  -~, is found to be the 
integral kernel of the operator 

exp( - f ih )  
~/.,~(~c) - (29) 

Tr{exp(-t iff)} 

where 

fi = -A~ + 052x2 (30) 

05 = [~ .  coth(fl)+ (n - 1) ~. coth(f l i . ) ]  ~/2 
~ ( - f l ) ~  ~ - i-) ~ _ 1  (31) L 

and 

tanh(f105) = n;: 1/2 [~n coth2(fl) + (n - 1) 2 ~. coth2(fl~.) 

+ (n - 1)(1 + i2) coth(fl) coth(f l i . ) ]  -1/2 (32) 

with ~ . =  ( l + nK)  1/2. It follows that the eigenvalues 2'v(%,~(~c)) satisfy 
inequality (26) for all e > 0 if, an only if, 

f105 >~ fl (33) 

which (for n/> 2) is in turn equivalent to 

L(fl, ~)= 
2 + n• + n(~c 2 + 4n~c + 4) 1/2 

2(n + 1)(1 + n~c) 1/2 tanh(fi) coth[fl(1 + n~c) 1/2] ~< 1 (34) 

Now for any fixed f l>0 ,  there is a ~c~')>0 such that f.(fl,  ~)~< 1 for 
0 ~< ~c ~< ~c~ ") and f . ( f l ,  ~c) > 1 for • > tc~ "). This shows that the upper bound 
(26) cannot hold for arbitrary positive interactions--at least as far as 
V-representability in L2(R 3") or in Boltzmann-Fock space is concerned-- 
but may hold if the interaction is positive and small in some sense, as it 
does in this example for coupling constants ~ with 0 ~< ~c ~< ~c~ "). 

6. C O N S E Q U E N C E S  FOR D E N S I T Y  F U N C T I O N A L  T H E O R Y  

Generally speaking, the HKM inverse problem appears more com- 
plicated than the ground-state inverse problem of the original Hohenberg 
Kohn theory, in that it represents a kind of simultaneous inverse problem 
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in potential and temperature: Given Ve ~3, one is to establish for what 
value (or values) of T, if at all, ~ is V-representable, and one is then to 
construct a representing external potential operator v(~) for every tem- 
perature T for which this is possible. While the inversion for v is known to 
be unique (once the chemical potential is fixed) by Mermin's theorem, (8) 
the situation has hitherto, at least to our knowledge, remained entirely 
unresolved as far as the inversion for T is concerned. 

To this problem, the results presented above giye at least a partial 
answer. For in those cases where inequality (18) is valid, we can conclude 
from (17) and (18) that a given one-matrix cannot be V-representable for 
more than one value of ft. The proof is just the same as in Section 4. Thus, 
for the class of interactions for which (18) obtains--shown to be nonempty 
by the examples given in Sections 4 and 5 above--the T-inversion in the 
H K M  inverse problem is unique, too. In the case of these interactions there 
is associated, with every V-representable one-matrix ~/ not only a unique 
representing external potential operator v(~/) (relative to the chemical 
potential chosen), but also a unique "representation temperature" T('/). 
Moreover, T(,/) can be explicitly expressed, since from (17) and (18) it 
follows that 

1 2~(-A~) 
T('/) = ~ lim 

v ~  ~ - l n [ , V ~ ( ~ , ) ]  
( 3 5 )  

Hence the T-inversion can actually be performed in these cases. 
Equation (35) is a rather curious formula, in that it reveals that T(7) 

depends on the extreme tail of the sequence of eigenvalues of "/, a feature 
already noted above with regard to inequality (17). This trait makes the 
formula (35) extremely awkward from a numericist's point of view and 
may be regarded as one more indication of the highly delicate nature of the 
H K M  inverse problem. 

The limit in (35) will, as a rule, fail to exist for one-matrices "/that are 
not V-representable. 7 As a consequence, the unique relationship furnished 
by (35) between a one-matrix "/ and an associated temperature T('/) will 
be lost as soon as one steps outside of the domain of V-representable 
~/-matrices, and will hence not be available in the context of functionals 
that 'extend the original "Mermin functional" 

G ~ ) [ ' / ]  := Y(fi, #; v(~/))- Tr{7'/2v(7) ,/1/2} (36) 

7 This does not mean to say, however, that the existence of the limit ensures V-repre- 
sentability. As shown for the interactionless case in Corollary 3, the requirements for "~ to be 
V-representable not only refer to the eigenvalues, but also to the eigenfunctions of 7- 
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beyond its original domain of definition. An extension of this kind is 
obtained, in analogy to similar constructions by Levy (2) and Lieb (4) for the 
ground-state functional, by defining, for 7 e ~,  

Gr = inf{Tr[F 1/2(H o - ~tN) F 1/2 + /~-JF  In F ] tF e ~3, H(F ) = 7} (37) 

and has the attractive feature that 

Y(/3, #; v) = min{G~.~[~] + Tr [~/1/2v'r ~/2 ] I~/e ~3 } (38) 

There is, however, no way of using (35) to eliminate the Tdependence on 
the right-hand side of (37), for the reasons mentioned. 

7. C O N C L U S I O N  

Under the assumptions specified in Section 2, every V-representable 
one-particle density matrix is subject to the "spectral constraint" of 
Corollary 1 as expressed in inequality (17). This result has important con- 
sequences both for practical applications, where it has to be respected 
in any attempted construction of one-matrices that are intended to be 
V-representable, and for the more fundamental theoretical questions 
associated with the Hohenberg-Kohn Mermin inverse problem. 

The corresponding upper bound (18) has so far only been established 
for noninteracting particles, and for a rather special model of harmonically 
coupled harmonic oscillators. However, we believe it to be valid in greater 
generality and want to draw attention to the important task of identifying 
a useful class of interaction potentials for which inequality (18) can be 
proven, the case of greatest interest being, of course, the Coulomb inter- 
action. Any success in that direction would contribute toward clarifying the 
extent of the Hohenberg-Kohn Mermin inverse problem, by showing the 
T-inversion to be unique. 
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